Меню
Бесплатно
Главная  /  Птицы  /  Сопло лаваля и режимы его работы. Образование кавитационных пузырьков при прохождении водяной струи через сопло лаваля Возбуждение молекул паров воды в сопле лаваля

Сопло лаваля и режимы его работы. Образование кавитационных пузырьков при прохождении водяной струи через сопло лаваля Возбуждение молекул паров воды в сопле лаваля

Сопло Лаваля

Сопло́ Лава́ля - техническое приспособление, разгоняющее проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей .

Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.

Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин .

Приоритет Годдарда на применение сопла Лаваля для ракет подтверждается рисунком в описании изобретения в патенте США U.S. Patent 1 102 653 от 7 июля 1914 г., на двухступенчатую твердотопливную ракету, заявленном в октябре 1913 г.

В России в ракетном двигателе сопло Лаваля впервые было использовано генералом М. М. Поморцевым в 1915 г.. В ноябре 1915 года в Аэродинамический институт обратился генерал М. М. Поморцев с проектом боевой пневматической ракеты. Ракета Поморцева приводилась в движение сжатым воздухом, что существенно ограничивало ее дальность, но зато делало ее бесшумной. Ракета предназначалась для стрельбы из окопов по вражеским позициям. Боеголовка оснащалась тротилом. В ракете Поморцева было применено два интересных конструктивных решения: в двигателе имелось сопло Лаваля , а с корпусом был связан кольцевой стабилизатор.

Принцип действия

Феномен ускорения газа до сверхзвуковых скоростей в сопле Лаваля был обнаружен в конце XIX в. экспериментальным путём. Позже это явление нашло теоретическое объяснение в рамках газовой динамики .

При следующем анализе течения газа в сопле Лаваля принимаются следующие допущения:

Отношение локальной скорости к локальной скорости звука обозначается числом Маха , которое также понимается местным, то есть зависимым от координаты :

(1) (4)

Скорость газа на выходе из сопла, м/с,

- Абсолютная температура газа на входе,

- Универсальная газовая постоянная Дж/(киломоль·К),

- молярная масса газа, кг/киломоль,

Показатель адиабаты ,

- Удельная теплоёмкость при постоянном давлении, Дж/(киломоль·К),

Удельная теплоёмкость при постоянном объеме, Дж/(киломоль·К),

Абсолютное давление газа на выходе из сопла, Па

Абсолютное давление газа на входе в сопло, Па

Функционирование в среде

При работе сопла Лаваля в непустой среде (чаще всего речь идет об атмосфере) сверхзвуковое течение может возникнуть только при достаточно большом избыточном давлении газа на входе в сопло по сравнению с давлением окружающей среды.

При возникновении сверхзвукового течения давление газа на выходном срезе сопла может оказаться даже меньше давления окружающей среды (вследствие перерасширения газа при движении по соплу). Такой поток может оставаться стабильным, поскольку давление окружающей среды (пока оно ненамного превышает давление газа на срезе сопла) не может распространяться против сверхзвукового потока.

Зависимость характеристик двигателя от давления газа на срезе сопла носит более сложный характер: как следует из уравнения (4), растёт с убыванием , а добавка - убывает, и при становится отрицательной.

При фиксированном расходе газа и давлении на входе в сопло величина зависит только от площади среза сопла, которую обычно характеризуют относительной величиной - степенью расширения сопла - отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление , и тем больше скорость истечения газа .

Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи.

Однако, при значительном превышении давления окружающей среды над давлением в газовом потоке, в нём возникает обратная ударная волна , которая распространяется против потока со сверхзвуковой скоростью, тем большей, чем больше перепад давления на её фронте, что приводит к срыву сверхзвукового течения газа в сопле (полному или частичному). Это явление может стать причиной автоколебательного процесса, когда сверхзвуковое движение газа в сопле периодически возникает и срывается с частотой от нескольких герц до десятков герц. Для сопел ракетных двигателей, в которых происходят процессы большой мощности, эти автоколебания являются разрушительными, не говоря о том, что эффективность двигателя в таком режиме резко падает. Это накладывает ограничение на степень расширения сопла, работающего в атмосфере.

Регулирование степени расширения сопла с насадком.
1 - собственно сопло Лаваля;
2 - сопловой насадок;
А - положение насадка при работе в нижних, наиболее плотных, слоях атмосферы;
В - положение насадка на большой высоте.

При подстановке в формулу (4) получается теоретический предел скорости истечения в пустоте, определяемый внутренней энергией газа: К этому пределу асимптотически стремится скорость истечения при неограниченном увеличении степени расширения сопла, при этом увеличивается длина, диаметр выходного сечения, и, следовательно, вес сопла. Конструктор сопла, работающего в пустоте, должен принять решение: при какой степени расширения дальнейшее увеличение размера и веса сопла не стоит того увеличения скорости истечения, которое может быть достигнуто в результате. Такое решение принимается на основании всестороннего рассмотрения функционирования всего аппарата в целом.

Вышесказанное объясняет то обстоятельство, что ракетные двигатели, работающие в плотных слоях атмосферы, как правило, имеют степень расширения меньшую, чем двигатели, работающие в пустоте. Например, у двигателя F-1 первой ступени носителя Сатурн-5 степень расширения составляет 16:1, а RL 10B-2 - двигатель, используемый NASA на ускорителях межпланетных зондов, имеет степень расширения равную 250:1.

Стремление добиться эффективной работы двигателя как на Земле, так и на высоте заставляет конструкторов искать технические решения, позволяющие достигнуть эту цель. Одним из таких решений явился подвижный сопловой насадок - «продолжение» сопла, которое пристыковывается к нему по достижении ракетой разреженных слоёв атмосферы, увеличивая, таким образом, степень расширения сопла. Схема действия насадка изображена на рисунке справа. Эта схема была практически реализована, в частности, в конструкции двигателя НК-33-1 .

Проблема оптимизации степени расширения сопла очень актуальна и при разработке авиационных реактивных двигателей, поскольку самолёт предназначен для полётов в широком диапазоне высот, а от удельного импульса его двигателей в сильной мере зависит экономичность и, следовательно, дальность полёта. В современных турбореактивных двигателях применяются регулируемые сопла Лаваля. Такие сопла состоят из продольных пластин, имеющих возможность перемещения друг относительно друга, со специальным механизмом с гидравлическим или пневматическим приводом, позволяющим в полёте изменять площадь выходного и/или критического сечений, и, таким образом, добиваться оптимальной степени расширения сопла при полёте на любой высоте. Регулирование площади проходных сечений выполняется, как правило, автоматически специальной системой управления. Этот же механизм позволяет по команде пилота изменять в некоторых пределах и направление реактивной струи, а следовательно, направление вектора тяги , что существенно повышает маневренность самолёта.

Материал из Википедии - свободной энциклопедии

Сопло́ Лава́ля - газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей .

Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.

Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин .

При анализе течения газа в сопле Лаваля принимаются следующие допущения:

  • Газ считается идеальным .
  • Газовый поток является изоэнтропным (то есть имеет постоянную энтропию, силы трения и диссипативные потери не учитываются) и адиабатическим (то есть теплота не подводится и не отводится).
  • Газовое течение является стационарным и одномерным, то есть в любой фиксированной точке сопла все параметры потока постоянны во времени и меняются только вдоль оси сопла, причём во всех точках выбранного поперечного сечения параметры потока одинаковы, а вектор скорости газа всюду параллелен оси симметрии сопла.
  • Массовый расход газа одинаков во всех поперечных сечениях потока.
  • Влияние всех внешних сил и полей (в том числе гравитационного) пренебрежимо мало.
  • Ось симметрии сопла является пространственной координатой x .

Отношение локальной скорости v к локальной скорости звука C обозначается числом Маха , которое также понимается местным, то есть зависимым от координаты x :

M = \frac{v}{C} (1) v_e = \sqrt{\;\frac{T\;R}{M}\cdot\frac{2\;k}{k-1}\cdot\bigg[ 1-\bigg(\frac {p_e} {p}\bigg)^{(k-1)/k}\bigg]} (4)

v_e - Скорость газа на выходе из сопла, м/с,

Зависимость характеристик двигателя от давления газа на срезе сопла p_e носит более сложный характер: как следует из уравнения (4), v_e растёт с убыванием p_e, а добавка \frac {A_e} {m{"}}\cdot(p_e-p_o) - убывает, и при p_eСтановится отрицательной.

При фиксированном расходе газа и давлении на входе в сопло величина p_e зависит только от площади среза сопла, которую обычно характеризуют относительной величиной - степенью расширения сопла - отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление p_e, и тем больше скорость истечения газа v_e.

Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи.

  • p_e=p_o - оптимальный режим расширения сопла, при котором удельный импульс достигает максимального значения (при прочих равных условиях). При этом, как следует из уравнения (5), удельный импульс становится численно равным скорости истечения газа v_e.

  • p_e - режим перерасширения . Уменьшение степени расширения сопла (несмотря на уменьшение скорости истечения газа) приведёт к увеличению удельного импульса. При проектировании ракетных двигателей первых ступеней ракет конструкторы часто сознательно идут на перерасширение, поскольку с набором ракетой высоты атмосферное давление падает, уравнивается с давлением на срезе сопла, и удельный импульс двигателя возрастает. Таким образом, жертвуя тягой в начале полёта, получают преимущество на последующих его стадиях, что, как показывают расчёты и практика, в сумме даёт выигрыш в конечной скорости ракеты.
Однако, при значительном превышении давления окружающей среды над давлением в газовом потоке, в нём возникает обратная ударная волна , которая распространяется против потока со сверхзвуковой скоростью, тем большей, чем больше перепад давления на её фронте, что приводит к срыву сверхзвукового течения газа в сопле (полному или частичному). Это явление может стать причиной автоколебательного процесса, когда сверхзвуковое движение газа в сопле периодически возникает и срывается с частотой от нескольких герц до десятков герц. Для сопел ракетных двигателей, в которых происходят процессы большой мощности, эти автоколебания являются разрушительными, не говоря о том, что эффективность двигателя в таком режиме резко падает. Это накладывает ограничение на степень расширения сопла, работающего в атмосфере.

  • p_e>p_o - режим недорасширения . Недорасширение означает, что не вся внутренняя энергия газа израсходована на его ускорение и, увеличив степень расширения сопла, можно добиться увеличения скорости истечения газа и удельного импульса. В пустоте (при p_o=0) полностью избежать недорасширения невозможно.
При подстановке p_e=0 в формулу (4) получается теоретический предел скорости истечения в пустоте, определяемый внутренней энергией газа: v_{max} = \sqrt{\;\frac{T\;R}{M}\cdot\frac{2\;k}{k-1}} К этому пределу асимптотически стремится скорость истечения при неограниченном увеличении степени расширения сопла, при этом увеличивается длина, диаметр выходного сечения, и, следовательно, вес сопла. Конструктор сопла, работающего в пустоте, должен принять решение: при какой степени расширения дальнейшее увеличение размера и веса сопла не стоит того увеличения скорости истечения, которое может быть достигнуто в результате. Такое решение принимается на основании всестороннего рассмотрения функционирования всего аппарата в целом.

Вышесказанное объясняет то обстоятельство, что ракетные двигатели, работающие в плотных слоях атмосферы, как правило, имеют степень расширения меньшую, чем двигатели, работающие в пустоте. Например, у двигателя F-1 первой ступени носителя Сатурн-5 степень расширения составляет 16:1, а RL 10B-2 - двигатель, используемый NASA на ускорителях межпланетных зондов, имеет степень расширения равную 250:1.

Стремление добиться эффективной работы двигателя как на Земле, так и на высоте заставляет конструкторов искать технические решения, позволяющие достигнуть эту цель. Одним из таких решений явился подвижный сопловой насадок - «продолжение» сопла, которое пристыковывается к нему по достижении ракетой разреженных слоёв атмосферы, увеличивая, таким образом, степень расширения сопла. Схема действия насадка изображена на рисунке справа. Эта схема была практически реализована, в частности, в конструкции двигателя НК-33-1 .

Проблема оптимизации степени расширения сопла очень актуальна и при разработке авиационных реактивных двигателей, поскольку самолёт предназначен для полётов в широком диапазоне высот, а от удельного импульса его двигателей в сильной мере зависит экономичность и, следовательно, дальность полёта. В современных турбореактивных двигателях применяются регулируемые сопла Лаваля. Такие сопла состоят из продольных пластин, имеющих возможность перемещения друг относительно друга, со специальным механизмом с гидравлическим или пневматическим приводом, позволяющим в полёте изменять площадь выходного и/или критического сечений, и, таким образом, добиваться оптимальной степени расширения сопла при полёте на любой высоте. Регулирование площади проходных сечений выполняется, как правило, автоматически специальной системой управления. Этот же механизм позволяет по команде пилота изменять в некоторых пределах и направление реактивной струи, а следовательно, направление вектора тяги , что существенно повышает маневренность самолёта.

См. также

Напишите отзыв о статье "Сопло Лаваля"

Примечания

Литература

  • Ландау Л. Д. , Лифшиц Е. М. Глава X. Одномерное движение сжимаемого газа. § 97. Истечение газа через сопло // Теоретическая физика . - Т. 6. Гидродинамика.
  • Моравский А. В., Файн М. А. Огонь в упряжке, или Как изобретают тепловые двигатели. - М .: Знание, 1990. - 192 с. - (Жизнь замечательных идей). - 50 000 экз. - ISBN 5-07-000069-1 .

Отрывок, характеризующий Сопло Лаваля

Пьер втайне своей души соглашался с управляющим в том, что трудно было представить себе людей, более счастливых, и что Бог знает, что ожидало их на воле; но Пьер, хотя и неохотно, настаивал на том, что он считал справедливым. Управляющий обещал употребить все силы для исполнения воли графа, ясно понимая, что граф никогда не будет в состоянии поверить его не только в том, употреблены ли все меры для продажи лесов и имений, для выкупа из Совета, но и никогда вероятно не спросит и не узнает о том, как построенные здания стоят пустыми и крестьяне продолжают давать работой и деньгами всё то, что они дают у других, т. е. всё, что они могут давать.

В самом счастливом состоянии духа возвращаясь из своего южного путешествия, Пьер исполнил свое давнишнее намерение заехать к своему другу Болконскому, которого он не видал два года.
Богучарово лежало в некрасивой, плоской местности, покрытой полями и срубленными и несрубленными еловыми и березовыми лесами. Барский двор находился на конце прямой, по большой дороге расположенной деревни, за вновь вырытым, полно налитым прудом, с необросшими еще травой берегами, в середине молодого леса, между которым стояло несколько больших сосен.
Барский двор состоял из гумна, надворных построек, конюшень, бани, флигеля и большого каменного дома с полукруглым фронтоном, который еще строился. Вокруг дома был рассажен молодой сад. Ограды и ворота были прочные и новые; под навесом стояли две пожарные трубы и бочка, выкрашенная зеленой краской; дороги были прямые, мосты были крепкие с перилами. На всем лежал отпечаток аккуратности и хозяйственности. Встретившиеся дворовые, на вопрос, где живет князь, указали на небольшой, новый флигелек, стоящий у самого края пруда. Старый дядька князя Андрея, Антон, высадил Пьера из коляски, сказал, что князь дома, и проводил его в чистую, маленькую прихожую.
Пьера поразила скромность маленького, хотя и чистенького домика после тех блестящих условий, в которых последний раз он видел своего друга в Петербурге. Он поспешно вошел в пахнущую еще сосной, не отштукатуренную, маленькую залу и хотел итти дальше, но Антон на цыпочках пробежал вперед и постучался в дверь.
– Ну, что там? – послышался резкий, неприятный голос.
– Гость, – отвечал Антон.
– Проси подождать, – и послышался отодвинутый стул. Пьер быстрыми шагами подошел к двери и столкнулся лицом к лицу с выходившим к нему, нахмуренным и постаревшим, князем Андреем. Пьер обнял его и, подняв очки, целовал его в щеки и близко смотрел на него.
– Вот не ждал, очень рад, – сказал князь Андрей. Пьер ничего не говорил; он удивленно, не спуская глаз, смотрел на своего друга. Его поразила происшедшая перемена в князе Андрее. Слова были ласковы, улыбка была на губах и лице князя Андрея, но взгляд был потухший, мертвый, которому, несмотря на видимое желание, князь Андрей не мог придать радостного и веселого блеска. Не то, что похудел, побледнел, возмужал его друг; но взгляд этот и морщинка на лбу, выражавшие долгое сосредоточение на чем то одном, поражали и отчуждали Пьера, пока он не привык к ним.
При свидании после долгой разлуки, как это всегда бывает, разговор долго не мог остановиться; они спрашивали и отвечали коротко о таких вещах, о которых они сами знали, что надо было говорить долго. Наконец разговор стал понемногу останавливаться на прежде отрывочно сказанном, на вопросах о прошедшей жизни, о планах на будущее, о путешествии Пьера, о его занятиях, о войне и т. д. Та сосредоточенность и убитость, которую заметил Пьер во взгляде князя Андрея, теперь выражалась еще сильнее в улыбке, с которою он слушал Пьера, в особенности тогда, когда Пьер говорил с одушевлением радости о прошедшем или будущем. Как будто князь Андрей и желал бы, но не мог принимать участия в том, что он говорил. Пьер начинал чувствовать, что перед князем Андреем восторженность, мечты, надежды на счастие и на добро не приличны. Ему совестно было высказывать все свои новые, масонские мысли, в особенности подновленные и возбужденные в нем его последним путешествием. Он сдерживал себя, боялся быть наивным; вместе с тем ему неудержимо хотелось поскорей показать своему другу, что он был теперь совсем другой, лучший Пьер, чем тот, который был в Петербурге.
– Я не могу вам сказать, как много я пережил за это время. Я сам бы не узнал себя.
– Да, много, много мы изменились с тех пор, – сказал князь Андрей.
– Ну а вы? – спрашивал Пьер, – какие ваши планы?
– Планы? – иронически повторил князь Андрей. – Мои планы? – повторил он, как бы удивляясь значению такого слова. – Да вот видишь, строюсь, хочу к будущему году переехать совсем…
Пьер молча, пристально вглядывался в состаревшееся лицо (князя) Андрея.
– Нет, я спрашиваю, – сказал Пьер, – но князь Андрей перебил его:
– Да что про меня говорить…. расскажи же, расскажи про свое путешествие, про всё, что ты там наделал в своих именьях?
Пьер стал рассказывать о том, что он сделал в своих имениях, стараясь как можно более скрыть свое участие в улучшениях, сделанных им. Князь Андрей несколько раз подсказывал Пьеру вперед то, что он рассказывал, как будто всё то, что сделал Пьер, была давно известная история, и слушал не только не с интересом, но даже как будто стыдясь за то, что рассказывал Пьер.
Пьеру стало неловко и даже тяжело в обществе своего друга. Он замолчал.
– А вот что, душа моя, – сказал князь Андрей, которому очевидно было тоже тяжело и стеснительно с гостем, – я здесь на биваках, и приехал только посмотреть. Я нынче еду опять к сестре. Я тебя познакомлю с ними. Да ты, кажется, знаком, – сказал он, очевидно занимая гостя, с которым он не чувствовал теперь ничего общего. – Мы поедем после обеда. А теперь хочешь посмотреть мою усадьбу? – Они вышли и проходили до обеда, разговаривая о политических новостях и общих знакомых, как люди мало близкие друг к другу. С некоторым оживлением и интересом князь Андрей говорил только об устраиваемой им новой усадьбе и постройке, но и тут в середине разговора, на подмостках, когда князь Андрей описывал Пьеру будущее расположение дома, он вдруг остановился. – Впрочем тут нет ничего интересного, пойдем обедать и поедем. – За обедом зашел разговор о женитьбе Пьера.
– Я очень удивился, когда услышал об этом, – сказал князь Андрей.
Пьер покраснел так же, как он краснел всегда при этом, и торопливо сказал:
– Я вам расскажу когда нибудь, как это всё случилось. Но вы знаете, что всё это кончено и навсегда.
– Навсегда? – сказал князь Андрей. – Навсегда ничего не бывает.
– Но вы знаете, как это всё кончилось? Слышали про дуэль?
– Да, ты прошел и через это.
– Одно, за что я благодарю Бога, это за то, что я не убил этого человека, – сказал Пьер.
– Отчего же? – сказал князь Андрей. – Убить злую собаку даже очень хорошо.
– Нет, убить человека не хорошо, несправедливо…
– Отчего же несправедливо? – повторил князь Андрей; то, что справедливо и несправедливо – не дано судить людям. Люди вечно заблуждались и будут заблуждаться, и ни в чем больше, как в том, что они считают справедливым и несправедливым.
– Несправедливо то, что есть зло для другого человека, – сказал Пьер, с удовольствием чувствуя, что в первый раз со времени его приезда князь Андрей оживлялся и начинал говорить и хотел высказать всё то, что сделало его таким, каким он был теперь.
– А кто тебе сказал, что такое зло для другого человека? – спросил он.
– Зло? Зло? – сказал Пьер, – мы все знаем, что такое зло для себя.
– Да мы знаем, но то зло, которое я знаю для себя, я не могу сделать другому человеку, – всё более и более оживляясь говорил князь Андрей, видимо желая высказать Пьеру свой новый взгляд на вещи. Он говорил по французски. Je ne connais l dans la vie que deux maux bien reels: c"est le remord et la maladie. II n"est de bien que l"absence de ces maux. [Я знаю в жизни только два настоящих несчастья: это угрызение совести и болезнь. И единственное благо есть отсутствие этих зол.] Жить для себя, избегая только этих двух зол: вот вся моя мудрость теперь.
– А любовь к ближнему, а самопожертвование? – заговорил Пьер. – Нет, я с вами не могу согласиться! Жить только так, чтобы не делать зла, чтоб не раскаиваться? этого мало. Я жил так, я жил для себя и погубил свою жизнь. И только теперь, когда я живу, по крайней мере, стараюсь (из скромности поправился Пьер) жить для других, только теперь я понял всё счастие жизни. Нет я не соглашусь с вами, да и вы не думаете того, что вы говорите.
Князь Андрей молча глядел на Пьера и насмешливо улыбался.
– Вот увидишь сестру, княжну Марью. С ней вы сойдетесь, – сказал он. – Может быть, ты прав для себя, – продолжал он, помолчав немного; – но каждый живет по своему: ты жил для себя и говоришь, что этим чуть не погубил свою жизнь, а узнал счастие только тогда, когда стал жить для других. А я испытал противуположное. Я жил для славы. (Ведь что же слава? та же любовь к другим, желание сделать для них что нибудь, желание их похвалы.) Так я жил для других, и не почти, а совсем погубил свою жизнь. И с тех пор стал спокойнее, как живу для одного себя.
– Да как же жить для одного себя? – разгорячаясь спросил Пьер. – А сын, а сестра, а отец?
– Да это всё тот же я, это не другие, – сказал князь Андрей, а другие, ближние, le prochain, как вы с княжной Марьей называете, это главный источник заблуждения и зла. Le prochаin [Ближний] это те, твои киевские мужики, которым ты хочешь сделать добро.
И он посмотрел на Пьера насмешливо вызывающим взглядом. Он, видимо, вызывал Пьера.
– Вы шутите, – всё более и более оживляясь говорил Пьер. Какое же может быть заблуждение и зло в том, что я желал (очень мало и дурно исполнил), но желал сделать добро, да и сделал хотя кое что? Какое же может быть зло, что несчастные люди, наши мужики, люди такие же, как и мы, выростающие и умирающие без другого понятия о Боге и правде, как обряд и бессмысленная молитва, будут поучаться в утешительных верованиях будущей жизни, возмездия, награды, утешения? Какое же зло и заблуждение в том, что люди умирают от болезни, без помощи, когда так легко материально помочь им, и я им дам лекаря, и больницу, и приют старику? И разве не ощутительное, не несомненное благо то, что мужик, баба с ребенком не имеют дня и ночи покоя, а я дам им отдых и досуг?… – говорил Пьер, торопясь и шепелявя. – И я это сделал, хоть плохо, хоть немного, но сделал кое что для этого, и вы не только меня не разуверите в том, что то, что я сделал хорошо, но и не разуверите, чтоб вы сами этого не думали. А главное, – продолжал Пьер, – я вот что знаю и знаю верно, что наслаждение делать это добро есть единственное верное счастие жизни.
– Да, ежели так поставить вопрос, то это другое дело, сказал князь Андрей. – Я строю дом, развожу сад, а ты больницы. И то, и другое может служить препровождением времени. А что справедливо, что добро – предоставь судить тому, кто всё знает, а не нам. Ну ты хочешь спорить, – прибавил он, – ну давай. – Они вышли из за стола и сели на крыльцо, заменявшее балкон.
– Ну давай спорить, – сказал князь Андрей. – Ты говоришь школы, – продолжал он, загибая палец, – поучения и так далее, то есть ты хочешь вывести его, – сказал он, указывая на мужика, снявшего шапку и проходившего мимо их, – из его животного состояния и дать ему нравственных потребностей, а мне кажется, что единственно возможное счастье – есть счастье животное, а ты его то хочешь лишить его. Я завидую ему, а ты хочешь его сделать мною, но не дав ему моих средств. Другое ты говоришь: облегчить его работу. А по моему, труд физический для него есть такая же необходимость, такое же условие его существования, как для меня и для тебя труд умственный. Ты не можешь не думать. Я ложусь спать в 3 м часу, мне приходят мысли, и я не могу заснуть, ворочаюсь, не сплю до утра оттого, что я думаю и не могу не думать, как он не может не пахать, не косить; иначе он пойдет в кабак, или сделается болен. Как я не перенесу его страшного физического труда, а умру через неделю, так он не перенесет моей физической праздности, он растолстеет и умрет. Третье, – что бишь еще ты сказал? – Князь Андрей загнул третий палец.
– Ах, да, больницы, лекарства. У него удар, он умирает, а ты пустил ему кровь, вылечил. Он калекой будет ходить 10 ть лет, всем в тягость. Гораздо покойнее и проще ему умереть. Другие родятся, и так их много. Ежели бы ты жалел, что у тебя лишний работник пропал – как я смотрю на него, а то ты из любви же к нему его хочешь лечить. А ему этого не нужно. Да и потом,что за воображенье, что медицина кого нибудь и когда нибудь вылечивала! Убивать так! – сказал он, злобно нахмурившись и отвернувшись от Пьера. Князь Андрей высказывал свои мысли так ясно и отчетливо, что видно было, он не раз думал об этом, и он говорил охотно и быстро, как человек, долго не говоривший. Взгляд его оживлялся тем больше, чем безнадежнее были его суждения.
– Ах это ужасно, ужасно! – сказал Пьер. – Я не понимаю только – как можно жить с такими мыслями. На меня находили такие же минуты, это недавно было, в Москве и дорогой, но тогда я опускаюсь до такой степени, что я не живу, всё мне гадко… главное, я сам. Тогда я не ем, не умываюсь… ну, как же вы?…
– Отчего же не умываться, это не чисто, – сказал князь Андрей; – напротив, надо стараться сделать свою жизнь как можно более приятной. Я живу и в этом не виноват, стало быть надо как нибудь получше, никому не мешая, дожить до смерти.
– Но что же вас побуждает жить с такими мыслями? Будешь сидеть не двигаясь, ничего не предпринимая…
– Жизнь и так не оставляет в покое. Я бы рад ничего не делать, а вот, с одной стороны, дворянство здешнее удостоило меня чести избрания в предводители: я насилу отделался. Они не могли понять, что во мне нет того, что нужно, нет этой известной добродушной и озабоченной пошлости, которая нужна для этого. Потом вот этот дом, который надо было построить, чтобы иметь свой угол, где можно быть спокойным. Теперь ополчение.
– Отчего вы не служите в армии?
– После Аустерлица! – мрачно сказал князь Андрей. – Нет; покорно благодарю, я дал себе слово, что служить в действующей русской армии я не буду. И не буду, ежели бы Бонапарте стоял тут, у Смоленска, угрожая Лысым Горам, и тогда бы я не стал служить в русской армии. Ну, так я тебе говорил, – успокоиваясь продолжал князь Андрей. – Теперь ополченье, отец главнокомандующим 3 го округа, и единственное средство мне избавиться от службы – быть при нем.
– Стало быть вы служите?
– Служу. – Он помолчал немного.
– Так зачем же вы служите?
– А вот зачем. Отец мой один из замечательнейших людей своего века. Но он становится стар, и он не то что жесток, но он слишком деятельного характера. Он страшен своей привычкой к неограниченной власти, и теперь этой властью, данной Государем главнокомандующим над ополчением. Ежели бы я два часа опоздал две недели тому назад, он бы повесил протоколиста в Юхнове, – сказал князь Андрей с улыбкой; – так я служу потому, что кроме меня никто не имеет влияния на отца, и я кое где спасу его от поступка, от которого бы он после мучился.
– А, ну так вот видите!
– Да, mais ce n"est pas comme vous l"entendez, [но это не так, как вы это понимаете,] – продолжал князь Андрей. – Я ни малейшего добра не желал и не желаю этому мерзавцу протоколисту, который украл какие то сапоги у ополченцев; я даже очень был бы доволен видеть его повешенным, но мне жалко отца, то есть опять себя же.
Князь Андрей всё более и более оживлялся. Глаза его лихорадочно блестели в то время, как он старался доказать Пьеру, что никогда в его поступке не было желания добра ближнему.

Для большего увеличения скорости истечения выше критической применяют комбинированное сопло Лаваля, названное по имени шведского инженера, впервые его предложившего. Схема сопла представлена на рис.3.4. Его суживающаяся часть работает как дозвуковое сопло, а расширяющаяся - как сверхзвуковое. В наименьшем сечении скорость равна местной скорости звука. При правильном выборе выходного сечения давление газа в нем равно

Рис.3.4. Комбинированное сопло Лаваля

давлению окружающей среды. Такой режим называется расчетным. Максимальный расход через сопло Лаваля остается таким же, как и в суживающемся сопле, увеличивается только скорость газа. Скорость в горловине сопла определяется по уже известному уравнению для критической скорости

Скорость в выходном сечении сопла вычисляется из приведенного ранее выражения при полном расширении газа до давления окружающей среды p 2 .

Если полагать, что расширение газа в сопле является адиабатным, то параметры (температура, давление, скорость, плотность) в любом промежуточном сечении можно определить используя известные зависимости для адиабатного процесса.

Постепенное расширение газа в раструбе сопла Лаваля происходит лишь при условии, что угол его раскрытия a не превышает 12-14 0 для конического сопла. При больших значениях угла a струи отрываются от стенок сопла и в нем образуются вихри как и при отсутствии раструба. При соотношении давлений b > b кр в наименьшем сечении сопла скорость газа будет меньше скорости звука и расширяющаяся часть будет работать как диффузор.

Сопла Лаваля широко используются для достижения сверхзвуковых скоростей движения газа или пара в турбинах, реактивных и ракетных двигателях, аэродинамических трубах. Следует подчеркнуть, что сопло Лаваля будет выполнять роль диффузора в том случае, когда скорость перед ним больше скорости звука («обратное» сопло Лаваля). Такие сопла применяются значительно реже, чем традиционные.

Что такое критический режим истечения газа, когда наступает эффект запирания, в чем его смысл и как его преодолеть?

Критические параметры потока

Параметры потока в сечении где скорость течения газа равна скорости звука называют критическими .

Критическая скорость также как и максимальная скорость однозначно определяется температурой торможения .

Если при течении газа температура торможения неизменна, то и критическая скорость неизменна.

За характерную принимают критическую скорость Vк или скорость звука - a.

  • λ=V/Vк
  • М=V/a
  • 0

    В критическом сечении безразмерные критерии λ и М равны 1. в критическом сечении принимает вид:

    M к =ρ к *V к *A к

    Эффект запирания

    Максимальное значение массового расхода достигает по достижению критического режима (в критическом сечении), при λ=1, q=А к /А=1 (функция q увязывает геометрию канала с параметрами потока, A площадь) и V=a.

    Последующее изменение параметров потока при неизменных параметрах торможения (R o и T o) не приводит к увеличению массового расхода. Это явление называется эффектом запирания.

    Рассмотрим процесс истечения газа из при заданных параметрах и известном противодавлении.

    Поскольку процесс истечения газа через баллон является очень быстротечным его считают адиабатическим. Если сопло выполнено гидравлически совершенным то, потери в нем невелики и ими, в первом приближении, можно пренебречь. То есть течение газа идеальное, адиабатическое, изоэнтропийное.

    При истечении воздуха из суживающегося сопла можно выделить два характерных режима работы:

    • режим дозвуковых скоростей
    • режим критических скоростей

    Режим дозвуковых скоростей

    • Р с =Р 1

При дозвуковом режиме массовый расход и скорость можно вычислить по формулам:

Режим критических скоростей

  • V=V к

На этом режиме изменение скорости и массового расхода за счет изменения противодавления Р 1 уже невозможно, этот факт неизменности скорости и массового расхода называют режимом запирания сопла .

Эффект запирания сопла вызван тем, что волны изменения противодавления Р 1 от источника возмущения распространяются со скоростью звука, до тех пор, пока скорость истечения V была меньше скорости звука эти волны давления проникали в струю и формировали истечение в соответствии с противодавлением Р 1 .

По достижении скорости истечения V равной скорости звука Vк, волны давления уже в струю не проникают, они уносятся струей, имеющей ту же скорость, поэтому изменить параметры истечения в соответствии с повышением противодавления не могут, наступает режим запирания.

При этом параметры в струе остаются критическими, а давление в струе Р к будет выше, чем противодавление Р 1 .

Сопло Лаваля

Для того, чтобы обеспечить течение газа со сверхзвуковой скоростью применяют сопло Лаваля. Массовый расход сквозь сопло будет критическим, а скорость истечения газа будет выше скорости звука.


Вдоль сопла происходит плавное снижение давления плоть до противодавления Р 1 , и плавный разгон потока от 0 до V к (скорости звука) в сходящейся части до сверхзвука в расходящейся части сопла.

Труба переменного сечения, рассчитанная так, что дозвуковая скорость на входе становится сверхзвуковой на выходе, называется соплом Лаваля. Рассмотрим одномерное изоэнтропическое течение газа в сопле Лаваля (рис. 10.4). Кривые изменения безразмерной

скорости (числа М) и давления

строенные по изоэнтропическим формулам, представлены на рис. 10.5 и на рис. 10.6 соответственно. Анализ кривых позволяет сделать следующие выводы о режимах работы сопла Лаваля.

Если выходное давление (противодавление) р" снижено ниже

того уровня, который необходим для создания скорости звука в критическом сечении, то изменения противодавления не передаются через это сечение. В этом случае условия между сечениями 0-0 и 1-1 (см. рис. 10.4) остаются неизменными для всех значений р 2 Здесь р 2а = р" представляет собой давление в выходном сечении 2-2,

при котором в критическом сечении 1-1 создается скорость звука. Давление в критическом сечении можно вычислить, подставляя в формулу Сен-Венана-Ванцеля (10.42) для щ значение скорости,

равное скорости звука в идеальном газе а =

- к Р.

или а= "кКТ

Р А / М

(здесь р - молекулярная масса газа, кг/кмоль; Я - универсальная

газовая постоянная, Дж/кмоль-К):

Для газов обычно

немного больше 0,5. Стоит отметить, что

максимальная скорость в критическом сечении {щ =а) меньше, чем скорость звука (ао) при условиях на входе. Из уравнений (10.9), (10.19) и (10.49) можно получить

Если выходное давление р 2 снизить ниже значения, при котором в критическом сечении достигается скорость звука, то где-нибудь за критическим сечением сопла образуется скачок уплотнения, т.е. внезапное изменение давления (см. § 10.7). Однако в правильно рассчитанном сопле при звуковой скорости в критическом сечении

р 2

существует единственное значение , при котором не возникают

скачки уплотнения. При этом для всех сечений сопла справедливы соотношения (10.42), (10.43).

1. Допустим на входе в сопло скорость газа дозвуковая, тогда возможны два случая (см. рис. 10.5): а) скорость газа в узком сечении не достигнет скорости звука и на выходе останется дозвуковой (кривая 1). Это возможно, когда давление за соплом больше критического; б) скорость газа в узком сечении достигает скорости звука. Тогда на выходе скорость газа может остаться дозвуковой (кривая 2), если р" > р * или стать сверхзвуковой (кривая 3), если

р" 2 р Допустим, на входе в сопло скорость газа сверхзвуковая (см. рис. 10.5). Тогда, убывая в конфузоре, она достигнет наименьшего значения в наиболее узком сечении. Здесь также возможны два случая: а) если в наиболее узком сечении и>а, то на выходе из сопла скорость газа останется сверхзвуковой (кривая 4); б) если в наиболее узком сечении скорость газа достигнет скорости звука (кривая 5), то в зависимости от противодавления р" на выходе поток будет дозвуковым (кривая 2) или сверхзвуковым (кривая 3).

Таким образом, дозвуковых режимов истечения из сопла Лаваля заданной формы существует много. Однако сверхзвуковое истечение единственно и может происходить при определенном значении противодавления. Скорость на выходе из сопла Лаваля при сверхзвуковом режиме превосходит скорость звука и может в зависимости от конструкции сопла повышаться с уменьшением противодавления. Однако массовый расход через сопло Лаваля, как и в случае конфу-зорного сопла, не превосходит своего максимального значения

^шах М*

Можно представить мысленно такое идеальное сопло Лаваля, которое будет работать на расчетном режиме р - 0. Это означает, что в камере будет достигнут абсолютный вакуум, причем наряду с р" обращаются в нуль р", Т ". Скорость такого истечения является

максимальной при данных параметрах в резервуаре. Согласно формуле Сен-Веннана-Ванцеля она равна

Для воздуха при Г 0 =288 К м тах =757 м/с.

Приведенные формулы справедливы для адиабатного движения идеального газа (лишенного внутреннего трения). В действительности движение газа в сопле неизмеримо сложнее. Рассчитанное по приближенной теории сопло может не дать желаемого увеличения скорости (числа М) на выходе, поэтому дополнительно необходима экспериментальная проверка. Применяются и более точные расчеты.